distributions Documentation
Release 2.0.0

Salesforce.com

November 05, 2014

Contents

1 Overview

1.1 Feature Model API
1.2 Clustering Model API
1.3 Source of Entropy
2 Installation
2.1 Python Standalone
2.2 C++ Standalone
2.3 Python wrapping libdistributions
2.4 Developer Quick Start

W =

AN L L D

CHAPTER 1

Overview

Distributions implements low-level primitives for Bayesian MCMC inference in Python and C++ including:

special numerical functions distributions.<flavor>.special,
samplers and density functions from a variety of distributions, distributions.<flavor>.random,

conjugate component models (e.g., gamma-Poisson, normal-inverse-chi-squared)
distributions.<flavor>.models, and

clustering models (e.g., CRP, Pitman-Yor) distributions.<flavor>.clustering.

Python implementations are provided in up to three flavors:

Debug distributions.dbg are pure-python implementations for correctness auditing and error checking,
and allowing debugging via pdb.

High-Precision distributions.hp are cython implementations for fast inference in python and numerical
reference.

Low-Precision distributions. 1p are inefficent wrappers of blazingly fast C++ implementations, intended
mostly as wrappers to check that C++ implementations are correct.

Our typical workflow is to first prototype models in python, then prototype faster inference applications using cython
models, and finally implement optimized scalable inference products in C++, while testing all implementations for
correctness.

1.1

Feature Model API

Feature models are contained in modules in python and structs in C++. Below write Model.thing to denote
module.thing in python and Model: : thing in C++.

Most functions consume explicit entropy sources in C++ or global_rng implicitly in python

Below json denotes a python dict/list/number/string suitable for serialization with the json package.

Each feature model API consist of:

* Datatypes.

— Shared - shared global model state including fixed parameters, hyperparameters, and, for datatypes with
dynamic support, shared sufficient statistics.

— Value - observation state, i.e., datum

— Group - local component state including sufficient statistics and possibly group parameters

distributions Documentation, Release 2.0.0

— Sampler - partially evaluated per-group sampling function (optional in python)

— Scorer - cached per-group scoring function (optional in python)

— Mixture - vectorized scoring functions for mixture models (optional in python)
* Shared operations. These should be simple and fast:

shared = Model.Shared()
shared.protobuf_load (message)
shared.protobuf_dump (message)

shared.load (json) # python only
shared.dump () —-> Jjson # python only
Shared.from_dict (json) -> shared # python only
Shared. from_protobuf (json, message) # python only
Shared.to_protobuf (message) —-> json # python only

shared.add_value (value)

shared.add_repeated_value (value)
shared.remove_value (value)

shared.realize ()

shared.plus_group (group) —-> shared # optional

* Group operations. These should be simple and fast. These may consume entropy:

group = Model.Group ()

group.protobuf_load (message)

group.protobuf_dump (message)

group.load(json) # python only
group.dump () —> Jjson python only

s

Group.from_values (shared, values) —-> group
Group.from_dict (json) —-> group
Group.from_protobuf (json, message)
Group.to_protobuf (message) —-> json

python only
python only
python only
python only

He oW # W

group.init (shared)

group.add_value (shared, value)
group.add_repeated_value (shared, value, count)
group.remove_value (shared, value)

group.merge (shared, other_group)

group.sample_value (shared)

group.score_value (shared)

group.vaidate () # C++ only

e Sampling. These may consume entropy:

sampler = Model.Sampler ()

sampler.init (shared, group)

sampler.eval (sampler) -> value

group.sample_value (shared) -> value

Model.sample_group (shared, group_size) -> group # python only

* Scoring. These may also consume entropy, e.g. when implemented using monte carlo integration):

scorer = Model.Scorer ()

scorer.init (shared, group)

scorer.eval (shared, value) —-> float
group.score_value (shared, value) —-> float

2 Chapter 1. Overview

distributions Documentation, Release 2.0.0

* Mixture Slaves (optional in python). These provide batch operations on a collection of groups.:

mixture = Model.Mixture ()

mixture.groups () .push_back (group) # C++ only
mixture.append (group) # python only
mixture.init (shared)

mixture.add_group (shared)

mixture.remove_group (shared, groupid)

mixture.add_value (shared, groupid, value)
mixture.remove_value (shared, groupid, value)
mixture.score_value (shared, value, scores_accum)
mixture.score_data (shared) -> float
mixture.score_data_grid(shareds, scores_out) # C++ only

 Testing metadata. Example model parameters and datasets are automatically discovered by unit test infrastruc-
tures, reducing the cost of per-model test-writing:

in python

for example in Model.EXAMPLES:
shared = Model.shared_load(example[’shared’])
values = example[’values’]

// in CH++
Model: :Shared shared = Model::Shared: :EXAMPLE () ;

1.2 Clustering Model API

» Sampling and scoring:

model = Model ()

model .sample_assignments (sample_size)
model.score_counts (counts)
model.score_add_value(...)
model.score_remove_value (...)

* Mixture driver (optional in python). These provide batch operations on a collection of groups. Clustering
mixture drivers, referencing a clustering model:

mixture = model.Mixture ()

mixture.counts () .push_back (count) # C++ only
mixture.init (model) # C++ only
mixture.init (model, counts) # python only
mixture.remove_group (shared, groupid)

mixture.add_value (shared, groupid, wvalue) -> bool
mixture.remove_value (shared, groupid, value) —-> bool

mixture.score_value (shared, value, scores_out)
mixture.score_data (shared) -> float

Mixture drivers and slaves coordinate using the pattern:

driver is a single clustering model
slaves is a list of feature models

def add_value (driver, slaves, groupid, value):
added = driver.mixture.add_value (driver.shared, groupid, wvalue)

1.2. Clustering Model API 3

distributions Documentation, Release 2.0.0

for slave in slaves:
slave.mixture.add_value (slave.shared, groupid, value)
if added:
slave.mixture.add_group (slave.shared)

def remove_value (driver, slaves, groupid, value):
removed = driver.mixture.remove_value (driver.shared, groupid, value)
for slave in slaves:
slave.mixture.add_value (slave.shared, groupid, value)
if removed:
slave.mixture.remove_group (slave.shared, groupid)

See examples/mixture/main.py for a working example.

* Testing metadata (python only). Example model parameters and datasets are automatically discovered by unit
test infrastructures, reducing the cost of per-model test-writing:

ExampleModel .EXAMPLES = [...model specific...]

1.3 Source of Entropy

The C++ methods explicity require a random number generator rng everywhere entropy may be consumed. The
python models try to maintain compatibility with numpy.random by hiding this source either as the global
numpy . random generator, or as single global_rng in wrapped C++.

4 Chapter 1. Overview

CHAPTER 2

Installation

You may build distributions in several ways:
* as a standalone C++ library
* as a standalone Python package

* as a Python package wrapping the dynamically-linked C++ library

Note: On OSX, distributions builds with newer versions of clang, but some systems default to g++. You can force
distributions to use clang by setting the CC environment variable before running any pip, cmake, or make commands

with export CC=clang.

2.1 Python Standalone

Install numpy and scipy. Then:

pip install distributions

2.2 C++ Standalone

Install requirements:

sudo apt-get install cmake libeigen3-dev

Toinstallin . /1ib:

make install

Alternatively, set a custom install location:

CMAKE_INSTALL_PREFIX=/my/prefix make install

2.3 Python wrapping libdistributions

Follow instructions for C++ Standalone. Install numpy and scipy. Then:

distributions Documentation, Release 2.0.0

LIBRARY_PATH=/my/prefix/1lib pip install distributions

Warning: When using wrapped libdistributions, the dynamic linker must be able to find the library. The environ-
ment variables used to do this differ from platform to platform.
On Linux, you might run python as follows:

LD_LIBRARY_PATH=S$SLD_LIBRARY_ PATH:/my/prefix/lib python
On OSX, you’ll need a different flag:
DYLD_LIBRARY_PATH=$DYLD_LIBRARY_PATH:/my/prefix/lib python

If you use virtualenv with virtualenvwrapper and use the virtualenv root as your prefix, it is convenient to add a
postactivate hook to set this environment. On Linux, this would look like this:

echo ’'export LD_LIBRARY_ PATH=$LD_LIBRARY_PATH:$VIRTUAL_ENV/1lib’ >> $VIRTUAL_ENV/bin/p¢stactivate

2.4 Developer Quick Start

This will install both the static and dynamic versions of libdistributions within a virtualenv, then install the distributions
Python package built to wrap libdistributions.

Install cmake. Install numpy, scipy, cython, and nosetests so that they’re available within a python virtualenv. Activate
that virtualenv. Then:

make test

The top-level Makefile provides many targets useful for development.

6 Chapter 2. Installation

	Overview
	Feature Model API
	Clustering Model API
	Source of Entropy

	Installation
	Python Standalone
	C++ Standalone
	Python wrapping libdistributions
	Developer Quick Start

